
Chapter
5 Windows 3.1 and Memory Management

This chapter contains information about how Microsoft Windows
3.1 interacts with memory. You can use this information to
manage memory while running Windows and to troubleshoot
various problems related to memory management. For specific
information about optimizing your system configuration, see
Chapter 6, “Tips for Configuring Windows 3.1.”

· Windows Resource Kit: Chapter 7, “Setting Up Non-Windows
Applications,” and Chapter 13, “Troubleshooting
Windows 3.1”

· Glossary terms: Expanded Memory Specification, Extended
Memory Specification, multitasking, page frame, protected
mode, virtual memory

Contents of this chapter

About Memory...228

Types of Memory: An Overview..228

The Windows 3.1 Memory Device Drivers...........................230

Expanded Memory: A Technical Discussion.......................230

Windows Standard Mode and Memory.......................................235

Extended Memory and Standard Mode.................................236

Expanded Memory and Standard Mode................................237

Windows 386 Enhanced Mode and Memory..............................238

WINA20.386 and 386 Enhanced Mode......................................238

 Windows Resource Kit

Related information · Windows User’s Guide: Chapter 5, “Control Panel,” and
Chapter 14, “Optimizing Windows”

228 Part 2 Configuring Windows 3.1

Extended Memory and 386 Enhanced Mode.........................239

Expanded Memory and 386 Enhanced Mode........................240

Virtual Memory and 386 Enhanced Mode............................243

Other Memory Management Issues...247

DPMI and VCPI Specifications..247

MS-DOS 5.0 and Windows 3.1...248

Memory and Windows Startup Requirements.......................249

Memory and the Windows System Resources.......................250

SMARTDrive 4.0: A Technical Discussion...................................252

About SMARTDrive 4.0..252

SMARTDrive 4.0: Frequently Asked Questions......................254

Windows Resource Kit

Chapter 5 Windows 3.1 and Memory Management 229

About Memory

Your computer’s random access memory (RAM) is a volatile
medium where applications and data are stored while you are
working with them. When you finish working, the information is
transferred back to permanent storage on the hard disk or floppy
disks.

Windows applications such as Microsoft Word and Microsoft
Excel have to be loaded into memory before they can run.
Generally, when you run Windows, the more memory your system
has available, the more applications you can run at the same time,
and the faster the applications will run.

This section describes the types of memory in a PC and provides a
technical overview of expanded memory. Other sections in this
chapter present issues specific to using memory in Windows
standard mode and 386 enhanced mode.

Note This chapter supplements, rather than repeating, the information in
Chapter 14, “Optimizing Windows,” in the Windows User’s Guide.

Types of Memory: An Overview

Your computer system can have three different kinds of memory:
conventional memory, extended memory, and expanded memory.
Windows also creates a fourth type of memory, virtual memory,
which is discussed in “Virtual Memory and 386 Enhanced Mode”
later in this chapter.

· Conventional memory consists of the first 640K of memory
available on your machine. Most PCs have at least 256K of
conventional memory. Your system must have 640K of
conventional memory to run Windows.

When you boot your machine, MS-DOS runs the utilities and
applications listed in the CONFIG.SYS and AUTOEXEC.BAT files.
These files often use conventional memory to function. The
remaining memory is available for running other applications
such as Windows.

 Windows Resource Kit

230 Part 2 Configuring Windows 3.1

· Extended memory is essentially a seamless upward extension
of the original one megabyte address space available in the
memory of 80286 and 80386 machines. Extended memory
always starts exactly at 1024K, where the upper memory area
ends. The first 64K of extended memory is referred to as the
high memory area (HMA).

· Expanded memory can be installed as an expanded memory
card or, on an 80386 machine, emulated by an expanded
memory manager (EMM). The EMM software maps pages of
expanded memory onto the system’s upper memory area (from
640K to 1024K). Applications must be designed to interact
with EMM software to take advantage of expanded memory.

Expanded memory is slower and more cumbersome to use than
extended memory, because the expanded memory manager gives
applications access to only a limited amount of expanded memory
at a time.

An 80286 processor can address 16 megabytes of total memory,
and an 80386 processor can address 4 gigabytes of memory. The
8086 and 8088 machines have hardware limitations that exclude
use of extended memory. For such machines, expanded memory is
the only option for extra memory.

Working with conventional and extended memory under
Windows 3.1 is a straightforward process that seldom demands
your attention, because Windows handles it automatically through
HIMEM.SYS. If you want to run non-Windows applications that
require expanded memory, you need a deeper understanding of
how it is structured and how to access it. For more details,
see “Expanded Memory: A Technical Discussion” later in this
chapter.

Figure 5.1 shows the relative addresses of conventional memory,
the upper memory area (used by expanded memory), and extended
memory.

Figure 5.1

Extended memory goes from 1024K to 16 MB for 80286 PCs, or
to 4 GB for 80386 PCs

Expanded memory uses page frames in the upper memory area

Windows Resource Kit

Chapter 5 Windows 3.1 and Memory Management 231

Conventional memory goes from 0K to 640K

To see the kind and amount of memory in your system:

· Type msd at the command prompt to run the Microsoft
Diagnostics utility that is installed with Windows 3.1. This
utility prepares an extensive report on the memory and drivers
installed in your system.

· Or, if MS-DOS 5.0 is installed on your system, type mem at the
command prompt to see a brief summary of your system’s
memory.

You can also use parameters with the MS-DOS 5.0 mem command.
The mem /c command reports free memory for both conventional
and upper memory addresses, and lists the decimal and
hexadecimal sizes of all programs loaded into conventional and
upper memory. The mem /p command presents a detailed listing
of memory use, including load order, size, and address information
for programs (listed separately from the environment). For more
information, see your MS-DOS 5.0 documentation.

Note If you use the mem command to view memory from within a Windows 3.1 virtual
machine, you will only see the amount of memory available to the virtual machine.

The Windows 3.1 Memory Device Drivers

Both Windows 3.1 and MS-DOS 5.0 provide these device drivers for
managing memory:

· HIMEM.SYS provides access to extended memory and the HMA.
The extended memory it provides conforms to XMS 3.0.

· EMM386.EXE takes the XMS 3.0 memory provided by HIMEM.SYS
and uses it to emulate expanded memory or to provide UMBs,
or both. EMM386.EXE is DPMI-compliant and emulates expanded
memory that conforms to LIM 3.2 or LIM 4.0.

· RAMDRIVE.SYS creates a RAM disk.

 Windows Resource Kit

232 Part 2 Configuring Windows 3.1

· SMARTDRV.EXE is a disk caching utility.

In addition, Windows 3.1 has two built-in memory managers:

· Swapdisk, which manages the disk swap process for caching
Windows application code in both standard and 386 enhanced
modes.

· Virtual Memory Manager (VMM), which manages swapping to
a temporary or permanent swap file in 386 enhanced mode.

Expanded Memory: A Technical Discussion

Note This discussion is relevant if you want to take advantage of expanded memory
installed in your system, or if you are running Windows 3.1 with non-Windows
applications that require expanded memory. If your system doesn’t have expanded
memory, or if you are not running applications designed to use expanded memory, you
can skip this discussion.

The original IBM PC design, based on the Intel 8086/8088 CPU,
restricts usable memory to about 640K. A Lotus/Intel/Microsoft
(LIM) collaboration developed a technique for adding memory to
PC systems. The LIM Expanded Memory Specification (EMS)
bypasses the memory limits by supporting memory cards that
contain 16K pages (or banks) of RAM that must be enabled or
disabled by software, but that cannot normally be addressed by the
CPU. Instead, each page is mapped into the address space of the
processor.

Applications can use expanded memory to get around the memory
limitations of 8086/8088 processors by using a special area of the
machine’s memory called the upper memory area. This upper
memory area is always located in the same area of the computer’s
address space: from 640K to 1024K (A000 to FFFF hexadecimal).
The upper memory area (sometimes referred to as the “adapter
segment” because that part of memory is used by hardware
adapters such as display adapters) is also where the ROM BIOS read-
only memory segment is located. Figure 5.2 shows the upper
memory area, its address range, and the items that occupy fixed
portions of it.

An application must be specifically written to take advantage of

Windows Resource Kit

Chapter 5 Windows 3.1 and Memory Management 233

expanded memory. Many non-Windows applications use expanded
memory:

· To gain more effective performance from large non-Windows
applications such as spreadsheets and CAD programs.

· To run memory-resident programs or applications that use
shared data.

This section describes the LIM expanded memory specifications
and discusses two operations for using expanded memory: bank
switching and backfilling.

Note The 80386 and higher microprocessors can emulate EMS hardware by using
extended memory with memory managers and special software such as EMM386.EXE. For
more information about using this device driver with Windows 3.1, see Chapter 6, “Tips
for Configuring Windows 3.1.”

The Expanded Memory Specifications

The two kinds of expanded memory are differentiated from one
another by their LIM expanded memory specification version
numbers:

· LIM 3.2 This expanded memory specification moves data in
64K blocks, each made up of four contiguous 16K pages to
form a 64K page frame. The LIM 3.2 standard works well for
storing data from spreadsheets in expanded memory, but it is
insufficient for multitasking.

· LIM 4.0 This expanded memory specification allows data to
be moved in blocks of 1 to 64 pages (overcoming the LIM 3.2
limitations on size and flexibility). LIM 4.0 also removes the
restriction that the pages must be contiguous, essentially
abandoning the page frame requirement.

 Windows Resource Kit

234 Part 2 Configuring Windows 3.1

General

HEX Address
Specific

 HEX Address Decimal
Address

Figure 5.2 FFFF 1024 1024K

FC00 FC00 1008

The upper memory area FBFF 1007 ROM BIOS

 F800 F800 992

(640K to 1024K) F7FF 991 (Basic

F400 F400 976 Input/Output

 F3FF 975 System)

 F000 F000 960

EFFF 959

EC00 EC00 944

EBFF 943 Not available

E800 E800 928 on PS/2s

E7FF 927 and some

E400 E400 912 other machines

Windows Resource Kit

Chapter 5 Windows 3.1 and Memory Management 235

E3FF 911

E000 E000 896

DFFF 895

DC00 DC00 880

DBFF 869

D800 D800 864

D7FF 863

D400 D400 848

D3FF 847

D000 D000 832

CFFF 831

CC00 CC00 816

CBFF 815

C800 C800 800

C7FF 799 8514/A

 Windows Resource Kit

236 Part 2 Configuring Windows 3.1

C400 C400 784 Non-PS/2

C3FF 783 VGA

C000 C000 768 EGA

BFFF 767 EGA/

BC00 BC00 752 VGA Hercules

BBFF 751 Text/ Page 2 CGA

B800 B800 736 Low Res

B7FF 735

B400 B400 720 Hercules

B3FF 719 MDA Page 1

B000 B000 704

AFFF 703

AC00 AC00 688

ABFF 687 EGA / VGA

A800 A800 672 High Resolution

Windows Resource Kit

Chapter 5 Windows 3.1 and Memory Management 237

A7FF 671 Display Memory

A400 A400 656

A3FF 655

A000 A000 640 640K

 Windows Resource Kit

238 Part 2 Configuring Windows 3.1

Figure 5.3 shows some key differences between the LIM 3.2 and
LIM 4.0 specifications. If a non-Windows application requires
expanded memory, usually its documentation will describe the LIM
version under which it works.

Figure 5.3

LIM 3.2 EMS
allows applications
to move four
continguous
16K pages of data,
forming a 64K page frame

LIM 4.0 EMS
allows applications
to move up to 64
16K pages and
allows backfilling in conventional memory from 640K down
to 256K

Windows Resource Kit

Chapter 5 Windows 3.1 and Memory Management 239

 Windows Resource Kit

240 Part 2 Configuring Windows 3.1

Bank Switching in Expanded Memory

Application programs take advantage of expanded memory by
making calls to the expanded memory manager (EMM) to request
blocks of expanded memory. Bank switching is the process of
mapping or temporarily assigning memory from a pool of
expanded memory to an empty address space in the upper memory
area.

For example, if an application needs more memory for data, it
contacts the EMM, which allocates expanded memory 16K at a
time. The application writes up to 64K of data to the address
allocated by the EMM, then requests another 64K allocation. This
request is the bank switch request. The EMM allocates another 64K
of memory at a different address while tracking where the first
64K of data was placed.

The EMM continues this bank switching activity, 16K at a time,
until the application makes no more request for memory space.
With bank switching, the EMM can manipulate several megabytes
of data through the single 64K space.

Backfilling in Expanded Memory

With LIM 4.0, the expanded memory manager can backfill
conventional memory addresses from 640K down to
approximately 256K, using memory that is usually reserved for
MS-DOS, utilities, and TSRs. With backfilling, the system can
manipulate large amounts of data, which is particularly important
for multitasking. A rotating pool of backfilled memory allows
entire applications and considerable data to be loaded into memory
at once, greatly speeding operations.

One trick to maximize the benefit of backfilling on 80286
machines is to disable as much of the motherboard memory as
possible (down to the 256K level) and let the expanded memory
card supply that memory. Because the expanded memory card is
supplying the memory, it can bank switch freely and make the best
use of available memory.

For 80386 machines, you can convert extended memory into

Windows Resource Kit

Chapter 5 Windows 3.1 and Memory Management 241

expanded memory by using an expanded memory manager such as
EMM386.EXE. If you are using an expanded memory card on an
80386 machine, read your manual carefully before trying to
backfill. Not all memory cards have the register support to supply
more than four 16K pages. Also, because Windows 3.1 supports
extended memory directly, backfilling expanded memory will not
give you any advantage for running Windows.

Difficulties with Expanded Memory

Expanded memory uses the upper memory area, which it shares
with hardware adapters such as SuperVGA video cards, network
cards, 3270 emulation cards, and ESDI disk controllers. Several
potential difficulties can arise when expanded memory contends
for address space with the adapters:

· Lack of free space. The primary problem for the EMM is
finding at least 64K of contiguous free space in which to place
the page frame. Even though LIM 4.0 technically doesn’t
require a 64K page frame, most expanded memory
applications will not use expanded memory unless the 64K
page frame is present. Frequently, the address areas of various
adapter cards need to be shuffled around to free enough space
for a contiguous 64K page frame. This process gets
complicated with boards such as the IBM 3270 emulator, which
has a nonmovable address in most machines.

· Mapping conflicts. Most expanded memory managers such
as EMM386 use a search algorithm to find unused memory
between the hexadecimal addresses C000 through DFFF. The
EMM then uses this memory as page frames. Some cards don’t
reserve their address space until the card is accessed, so the
EMM can inadvertently map expanded memory pages on top of
the adapter, causing crashes and intermittent operation. This
problem is fairly rare, because the page search routine can
locate almost all popular adapters.

If problems occur, start by disabling expanded memory to see if a
page conflict is causing the problem. If the problem goes away,
then the EMM needs to be told to exclude the adapter address from
consideration as a page location. The adapter might also have to be

 Windows Resource Kit

242 Part 2 Configuring Windows 3.1

moved. You do this in different ways with different EMMs. For
information on how to exclude an address range, consult the
documentation for your expanded memory manager.

For more information about taking advantage of memory in the
UMBs, see “Optimizing Use of the UMBs” in Chapter 6, “Tips for
Configuring Windows 3.1.” For related troubleshooting tips, see
“Troubleshooting EMS Memory Problems” in Chapter 13,
“Troubleshooting Windows 3.1.”

Windows Standard Mode and Memory

Standard mode is the normal operating mode for Windows on
80286 machines, providing direct access to extended memory.

Conventional memory takes no special consideration for Windows
in standard mode. Windows running in standard mode treats the
total free conventional and extended memory as one contiguous
memory block. This section describes how standard mode
Windows takes advantage of extended memory.

Standard mode does not use expanded memory for Windows
operations, but can work with expanded memory for non-
Windows applications running under Windows, as described at the
end of this section.

For information about entries in SYSTEM.INI that affect performance
in Windows standard mode, see the description of the entries in
the [standard] section in Chapter 4, “The Windows Initialization
Files.”

Extended Memory and Standard Mode

Standard mode Windows accesses extended memory directly through HIMEM.SYS (or
through a third-party XMS driver), providing the total free conventional and extended
memory for Windows applications to use. Any non-Windows applications that uses
extended memory can run under standard mode Windows.

Windows Resource Kit

Flowchart 5.9
 Cannot Run Windows

in Standard Mode

Chapter 5 Windows 3.1 and Memory Management 243

Standard mode Windows takes advantage of extended memory by:

· Performing code caching with Windows applications.
· Swapping non-Windows applications to extended memory.

Using Extended Memory for Code Caching

Standard mode Windows can speed up its operations by caching
code in extended memory through HIMEM.SYS. To perform code
caching, Windows takes advantage of certain attributes of
Windows applications. The code for each Windows application is
divided into segments with specific attributes, including:

· The Movable code segment, which means that the segment can
be moved around in memory.

· The Discardable code segment, which means that the segment
can be overwritten and then reloaded from disk when
necessary.

· The Swapable code segment, which can be swapped to the
hard disk.

Each Windows application keeps a minimum amount of code (its
“swapsize”) loaded in memory. If Windows runs out of memory
when a new application executes, Windows discards part of an old
application from active memory and overwrites it with new code
from the new executable file.

Using Extended Memory
with Non-Windows Applications

Non-Windows applications that use extended memory can run
under standard mode Windows. The amount of extended memory
that the application requires should be specified in the
application’s program information file (PIF).

For example, your system might have 2048K of extended
memory, and you might specify in the PIF that the non-Windows
application requires 1024K of extended memory. If standard mode
Windows is already using all of the extended memory when you
run the non-Windows application, then the information in the first

 Windows Resource Kit

244 Part 2 Configuring Windows 3.1

megabyte of extended memory is swapped to disk, and the non-
Windows application is given access to the newly free extended
memory. When you switch back to Windows from the non-
Windows application, the data in the original 1024K of extended
memory is reloaded from disk.

Because this file-swapping process can be slow, don’t request any
more extended memory in a PIF than is absolutely necessary to run
the non-Windows application.

Some non-Windows applications use MS-DOS Extender technology
such as VCPI or DPMI to run in protected mode. If you are running
such applications under standard mode Windows, you must
allocate extended memory in the application’s PIF, as described in
Chapter 7, “Setting Up Non-Windows Applications.” For more
information about VCPI, see “DPMI and VCPI Specifications” later in
this chapter.

Expanded Memory and Standard Mode

Windows running in standard mode does not use expanded
memory at all for its operations. But non-Windows applications
running under standard mode Windows can access expanded
memory if the system has a physical EMS card such as AST
RAMPage! or the Intel Above Board.

The expanded memory manager for the EMS card uses upper
memory blocks (UMBs) in the upper memory area. If you suspect a
UMB conflict is causing a problem in your system, remove the
expanded memory manager to see if that solves the problem. For
more information, see “Troubleshooting EMS Memory Problems”
in Chapter 13, “Troubleshooting Windows 3.1.”

Windows Resource Kit

Chapter 5 Windows 3.1 and Memory Management 245

Because non-Windows applications running under standard mode
can only use expanded memory with a physical EMS card, an
external 386 expanded memory manager such as EMM386.EXE
cannot provide the required expanded memory support in
Windows. However, an external 386 memory manager can
provide expanded memory support for non-Windows applications
when you aren’t running Windows.

If you want to use memory in the upper memory area, or if you
have an application that requires expanded memory but you don’t
have a physical EMS card, you must run Windows in 386 enhanced
mode. For more information about using EMM386.EXE, see
Chapter 6, “Tips for Configuring Windows 3.1.”

Windows 386 Enhanced Mode and Memory

Windows 386 enhanced mode is the normal operating mode for
systems with 80386 and higher processors.

When Windows runs in 386 enhanced mode, it adds up the amount of free conventional
and extended memory and treats the total amount as an avail-
able block of memory, in much the same way as standard mode. The entries in the
[386enh] section of SYSTEM.INI that control how Windows allocates conventional
memory are PerformBackfill=, ReservePageFrame=, WindowKBRequired=, and
WindowMemSize=. For more information, see these entries in Chapter 4, “The
Windows Initialization Files.”

Although 386 enhanced mode doesn’t use expanded memory for
Windows operations, it can simulate expanded memory for use by
non-Windows applications, as described later in this section.

You can also create a swap file so that Windows 386 enhanced
mode can take advantage of the virtual memory capabilities of the
80386 and higher processors, as described at the end of this
section.

 Windows Resource Kit

Flowcharts 5.1 and 5.2
 Cannot Run

386 Enhanced Mode

246 Part 2 Configuring Windows 3.1

WINA20.386 and 386 Enhanced Mode

The MS-DOS 5.0 Setup program installs a virtual device driver that
resolves conflicts between Windows 3.0 and MS-DOS 5.0 when both
try to access the HMA. This driver is a read-only file named
WINA20.386, which is automatically installed in your root directory.
Windows 3.0 will not run in 386 enhanced mode without this file.

· If you upgrade to Windows 3.1, or if you never run 386
enhanced mode with Windows 3.0, you can remove the
WINA20.386 file by changing its read-only attribute, then
deleting it in the usual way.

· If you are running Windows 3.0 and you move the WINA20.386
file to a different directory, you must ensure that Windows can
find this file by adding a switches=/w command to CONFIG.SYS
and also adding a device=[new path]\wina20.386 entry to
the [386enh] section of SYSTEM.INI.

Extended Memory and 386 Enhanced Mode

Windows 386 enhanced mode uses HIMEM.SYS, the extended
memory device driver, to load itself and its drivers into extended
memory. As in standard mode, Windows 386 enhanced mode
provides the total free conventional and extended memory for
Windows applications to use directly. So code caching for
Windows applications can also be performed in 386 enhanced
mode.

Windows 386 enhanced mode also allows non-Windows
applications to run in protected mode if the application uses the
DOS Protected Mode Interface (DPMI) specification (as described
later in this chapter). Lotus 1-2-3 version 3.1 is an example of a
DPMI application.

Windows 386 enhanced mode provides access to extended
memory for non-Windows applications by creating virtual
machines up to 640K in size, or the size defined by the
CommandEnvSize= entry in the [NonWindowsApp] section of
SYSTEM.INI.

Windows Resource Kit

Chapter 5 Windows 3.1 and Memory Management 247

Each virtual machine inherits the environment present before you
started Windows. This means that every driver and terminate-and-
stay-resident program (TSR) loaded before running Windows
consumes memory in every subsequent virtual machine. The
memory available within each virtual machine under 386 enhanced
mode is slightly less than the free memory available at the
command prompt before you start Windows, depending on your
system configuration.

When creating virtual machines for non-Windows applications,
Windows 386 enhanced mode uses the upper memory area for two
purposes:

· To allocate translation buffers for protected-mode API calls for
MS-DOS and the network.

· To place the page frame for expanded memory (if required).

Frequently, all of the free pages in the upper memory area are used
by 386 enhanced mode. The memory conflicts that can result are
discussed in the next section.

Expanded Memory and 386 Enhanced Mode

Windows 386 enhanced mode does not use expanded memory for
itself, and Windows applications don’t need expanded memory,
because they run in protected mode and can access extended
memory directly. However, Windows 386 enhanced mode can
create expanded memory for use by
non-Windows applications such as Lotus 1-2-3 that require or can
take advantage of expanded memory.

Windows 386 enhanced mode automatically provides expanded
memory for non-Windows applications that require it when you
run such applications under Windows. It cannot provide this
memory, however, if you load EMM386.EXE with the noems switch.
Use the ram switch when loading EMM386.EXE in CONFIG.SYS, or
use the x=mmmm-nnnn parameter to allocate enough space in the
upper memory area for Windows to create an EMS page frame.

 Windows Resource Kit

248 Part 2 Configuring Windows 3.1

Note The expanded memory required by a non-Windows application should be allocated
with PIF parameters as described in Chapter 7, “Setting Up Non-Windows Applications.”

Page-Frame Conflicts in 386 Enhanced Mode

Windows 386 enhanced mode provides additional page frames for
LIM 4.0 expanded memory in all virtual machines. But most non-
Windows applications use only the 64K page frame itself, not the
additional bankable pages in conventional memory that LIM 4.0
EMS supplies. So to use expanded memory to run non-Windows
applications, you must have a contiguous 64K page frame, made
up of four contiguous 16K pages in the upper memory area. The
key issue, therefore, for expanded memory under Windows is
page-frame conflicts.

The adapters installed on a system can break up the free area in the
upper memory area so that there is no 64K contiguous area to
place the page frame, and hence no free expanded memory for
running non-Windows applications. If this problem occurs, you
might have to rearrange the adapter memory locations.

This is easiest to do on a Micro Channel machine such as the IBM
Personal System/2, which allows you to change adapter memory
locations by booting with the PS/2 Reference Disk and choosing
Change Configuration. A similar procedure is available on most
Extended Industry Standard Architecture (EISA) bus machines,
such as the Compaq SystemPro and HP Vectra 486.

For Industry Standard Architecture (ISA) bus machines, such as the
IBM AT and Compaq 386, you might have to open the case and flip
DIP switches on the cards to change their memory addresses. Refer
to your hardware manual, and use Figure 5.2 (page 232) as a
reference when readdressing adapters to open a 64K page frame.

You can also disable expanded memory entirely (and 64K page
frame support) in Windows 386 enhanced mode by setting
NoEMMDriver=yes in the [386enh] section of SYSTEM.INI.

Other related entries in the [386enh] section of SYSTEM.INI are
EMMSize= and IgnoreInstalledEMM=. For more information,
see the descriptions of these entries in Chapter 4, “The
Windows Initialization Files.”

Windows Resource Kit

Chapter 5 Windows 3.1 and Memory Management 249

Placing Translation Buffers in the Upper Memory Area

In 386 enhanced mode, Windows allocates buffers in the upper
memory area to translate MS-DOS and network application program
interface (API) calls from Windows protected mode to MS-DOS real
mode. (Because the upper memory area is within the first
megabyte of address space, it can be accessed by MS-DOS in real
mode on an 80386 and higher processor.) Ideally, there will be
enough free space in the upper memory area to place both the
translation buffers and any expanded memory page frame
required. But on many systems there isn’t enough room, and you
must choose to eliminate the expanded memory page frame or
allocate the translation buffers in conventional memory (instead of
in the upper memory area).

If the translation buffers are allocated in conventional memory,
they take up memory in every virtual machine Windows creates,
leaving less space in the virtual machines to run non-Windows
applications. To compound the problem, the translation buffers
can be allocated either in the upper memory area or in
conventional memory, but never half-and-half.

To specify a preference, set the value for the
ReservePageFrame= entry in the [386enh] section of SYSTEM.INI.
If ReservePageFrame=true (the default), then Windows allocates
the page frame first and the translation buffers second. Usually, on
machines with full UMBs, the translation buffers are forced into
conventional memory, but this lets you use expanded memory for
non-Windows applications.

If ReservePageFrame=false, the translation buffers are allocated
in the UMBs first, followed by the page frame if there is still room.
This setting gives you the most free memory in virtual machines,
but you might not have enough expanded memory for non-
Windows applications.

 Windows Resource Kit

250 Part 2 Configuring Windows 3.1

Controlling UMB Mapping in 386 Enhanced Mode

You can control the placement of expanded memory page frames
and the translation-buffer mapping with the EMMExclude= or
ReservedHighArea= entries in the [386enh] section of
SYSTEM.INI. To explicitly exclude an area of the upper memory
area from mapping by Windows 386 enhanced mode, set a value
for EMMExclude=, for example, EMMExclude=E000-EFFF.
Because there is no standard for hardware implementation of the
E000-EFFF area, it is frequently necessary to exclude this range,
so that 386 enhanced mode can function properly. Windows 386
enhanced mode detects and excludes the area for most adapter
cards automatically.

Any values set with the x= switch in the line that loads EMM386.EXE
in CONFIG.SYS will override the value set for EMMExclude= in
SYSTEM.INI.

The ReservedHighArea= entry provides the same support, but for
4K ranges, rather than 16K. Other entries related to UMB mapping
in the [386enh] section of SYSTEM.INI are EMMInclude=,
EMMPageFrame=, EMMSize=, and UseableHighArea=. If you
suspect conflicting use of the upper memory area, use
EMMExclude=. Because Windows will use all free pages in the
upper memory area automatically, there are few uses for
EMMInclude=, EMMPageFrame=, and UseableHighArea=.
For more information, see the descriptions of these entries in
Chapter 4, “The Windows Initialization Files,” and see also
“Troubleshooting EMS Memory Problems” in Chapter 13,
“Troubleshooting Windows 3.1.”

Windows/386 2.x did not use the E000-EFFF area of the adapter
segment unless specifically instructed to do so. Windows 386
enhanced mode uses this segment unless the machine identifies
itself as a PS/2. As a side note, most of the entries in the [386enh]
section of SYSTEM.INI that begin with the letters “EMM” control
both placement of the expanded memory page frames and the
translation-buffer mapping. The letters “EMM” are used only for
backward compatibility; except for the EMMPageFrame= entry,
they no longer apply only to the expanded memory page frame.
The LastEMMSeg= parameter used in Windows/386 2.x has been

Windows Resource Kit

Chapter 5 Windows 3.1 and Memory Management 251

dropped for Windows 3.x.

About 386 Expanded Memory Managers

An expanded memory manager such as EMM386.EXE can provide
expanded memory for non-Windows applications on 80386 and
higher machines without a physical EMS card when you aren’t
running Windows. For more information about EMM386.EXE, see
Chapter 6, “Tips for Configuring Windows 3.1,” in the Windows
Resource Kit; see also “Freeing Expanded Memory” in Chapter 12
of the MS-DOS 5.0 User’s Guide and Reference.

 Windows Resource Kit

252 Part 2 Configuring Windows 3.1

Some 386 expanded memory managers such as EMM386.EXE and
CEMM.EXE allow Windows to turn them off when Windows is run.
CEMM.EXE requires that no expanded memory be in use when you
start Windows. (That is, set NoEMMDriver=yes in the [386enh]
section of SYSTEM.INI.)

W Both Windows 3.1 and MS-DOS 5.0 support the upper memory area
mechanisms defined for the LIM 3.2 and LIM 4.0, so 386 expanded
memory managers such as EMM386.EXE, 386MAX.SYS, and QEMM.SYS
can load network drivers and other software devices in the upper
memory area and still run with Windows 386 enhanced mode.

Virtual Memory and 386 Enhanced Mode

Virtual memory has been widely used for years with mainframes,
but first came to PCs with the introduction of the IBM/Microsoft
OS/2 operating system. Windows 386 enhanced mode goes beyond
OS/2 to offer virtual memory using the special demand-paging
capabilities of the Intel 80386 processor.

When virtual memory is used with Windows 386 enhanced mode,
some of the program code and data are kept in physical memory
while the rest is swapped to the hard disk in a swap file. Whenever
a reference is made to a memory address, it can be used without
interruption if the information is currently in physical memory. If
the information isn’t in physical memory, a page fault occurs and
the Windows Virtual Memory Manager (VMM) takes control,
pulling the required information back into physical memory and, if
necessary, swapping other information to the disk. All of this
activity is invisible to the user, who only sees some hard disk
activity.

Windows applications can use virtual memory without being
specially written to take advantage of it, because Windows handles
the memory management, allocating however much memory the
application requests. With Windows managing virtual memory,
you will see much more memory available than is installed in your
machine when you choose About Program Manager or About File
Manager from the Help menu.

Windows Resource Kit

Chapter 5 Windows 3.1 and Memory Management 253

A major benefit of using virtual memory is that you can run more
programs simultaneously than your system’s physical memory
would usually allow. The drawbacks are the disk space required
for the virtual memory swap file and the decreased execution
speed when page swapping is required. However, it’s usually
better to run a program slowly in virtual memory than to not be
able to run it at all.

 Windows Resource Kit

254 Part 2 Configuring Windows 3.1

Creating Swap Files for Virtual Memory

W In Windows 3.1, you can create a swap file for virtual memory
during Setup, or you can choose the 386 Enhanced icon in Control
Panel to change the swap file at any time. For details about using
the 386 Enhanced Mode dialog box, see Chapter 14, “Optimizing
Windows,” in the Windows User’s Guide.

Figure 5.4

Virtual Memory
dialog box

To display this dialog,
click the Virtual Memory button in the 386 Enhanced dialog

Click the Change button to display this extended dialog box

You can create either a temporary or a permanent swap file. A
permanent swap file improves the speed of the Windows virtual
memory system because the file is contiguous, so accessing it
requires less overhead than the normal MS-DOS file created for a
temporary swap file.

· A temporary swap file named WIN386.SWP is created on the hard
disk while Windows is running, then deleted automatically
when you exit Windows. This swap file is not a hidden or
system file, and it can shrink or grow in size as necessary. The
entry for PagingFile= in the [386enh] section of SYSTEM.INI
defines the filename and path for the temporary swap file. You
need about 1.5 MB of free hard disk space on the paging drive
for a temporary swap file.

Windows Resource Kit

Chapter 5 Windows 3.1 and Memory Management 255

· A permanent swap file is a hidden file named 386PART.PAR,
which has a system attribute and is always created in the root
directory of the specified drive. Windows also creates a read-
only SPART.PAR file in the WINDOWS directory that tells
Windows where and how large the permanent swap file is.
Because a permanent swap file must be contiguous, you cannot
create a permanent swap file bigger than the largest contiguous
free segment of your hard disk. You cannot create a permanent
swap file if Stacker is running on your system.

You can specify the type and size of a swap file and the drive where
it’s located in the Virtual Memory dialog box. A permanent swap
file is always created in the root directory. But you can specify a
subdirectory as the location for a temporary swap file as a
PagingFile= value in the [386enh] section of SYSTEM.INI.

When you install Windows, Setup checks whether your hard-disk
controller is compatible with 32-bit disk access. If so, the 32-Bit
Disk Access check box appears. Select this check box if your
system has only a small amount of free memory and you want to
increase performance for the MS-DOS Prompt. When this option is
checked, you can run more instances of MS-DOS Prompt and switch
between them faster. If you have multiple instances of MS-DOS
Prompt running and the applications in them all access disk drives,
the access time is faster with 32-bit disk access. For a technical
discussion of this features see “FastDisk: An Introduction to 32-Bit
Disk Access” in Appendix D, “Articles.”

The Windows virtual memory utility that creates swap files
supports only hard disks that use 512-byte sectors. If 512-byte
sectors are not being used, this indicates a nonstandard
configuration, such as a third-party driver. Never create a
permanent swap file on a drive that uses a partitioning driver, with
the exception of the Compaq ENHDISK.SYS utility.

Before you can create a large permanent swap file, you should
compact your hard disk with a disk compacting utility. If an error
message reports that your swap file is corrupted, delete the current
swap file and create a new one.

The related entries for swap files in the [386enh] section of

 Windows Resource Kit

256 Part 2 Configuring Windows 3.1

SYSTEM.INI are MaxPagingFileSize=, MinUserDiskSpace=,
PagingDrive=, and PagingFile=. For more information, see the
descriptions of these entries in Chapter 4, “The
Windows Initialization Files.”

Note Do not attempt to create a swap file on a RAM disk. A swap file
created on a RAM disk is self-defeating, because you sacrifice physical memory to create
virtual memory.

Demand Paging and Virtual Memory Management

Windows 386 enhanced mode manages virtual memory as a
demand-paged system that uses a virtual memory manager (VMM)
and a pageswap device (which is built into the WIN386.EXE file).
This means that pages of data are brought into physical memory
when they are referenced, and the system does not try to predict
which pages will be required in the future.

The Windows VMM maintains the virtual memory page table that
lists the pages currently in physical memory and those swapped to
disk. Because 386 enhanced mode is a multitasking environment,
the VMM page table also lists which memory pages belong to
which processes. When the VMM needs a page not currently in
physical memory, it calls the pageswap device, which allocates
virtual memory and maps pages into and out of physical memory.

Some virtual memory systems rely on program segmentation to do
their work. Although the code for a Windows application is
segmented as described earlier, Windows virtual memory
management is not related to this segmentation. All virtual and
physical memory is divided into 4K pages, and the system is
managed on this basis. Page mapping starts at 0000K and works its
way up.

Two kinds of pages can be allocated: physical pages and virtual
pages. The possible amount of physical pages is the amount of
physical memory in the machine divided by 4K. Memory allocated
to an application is made up of virtual pages, and at any time a
virtual page can be in physical memory or swapped to the hard
disk.

The entries in the [386enh] section of SYSTEM.INI that control

Windows Resource Kit

Chapter 5 Windows 3.1 and Memory Management 257

paging for virtual memory are:

LocalLoadHigh= Paging= SysVMEMSLimit=
MaxBPs= PagingDrive= SysVMEMSLocked=
MaxPhysPage= PagingFile= SysVMV86Locked=
MinUnlockMem= PageOverCommit= SysVMXMSLimit=

For more information, see the descriptions of these entries in
Chapter 4, “The Windows Initialization Files.”

The LRU Algorithm for Virtual Memory Management

The Windows VMM swaps pages using a Least Recently Used
(LRU) page replacement algorithm. This means pages that have not
been accessed for the longest period of time are the first ones to be
swapped to the disk.

The VMM page table contains flags for the Accessed and Dirty
attributes of each page. Accessed means that a process has made a
reference to the page since it was originally loaded. Dirty means
that a “write” has been made to the page since it was loaded.
Because a “write” qualifies as an “access,” the Dirty attribute
implies the Accessed attribute.

If physical memory space cannot be found when a process requests
additional memory, Windows uses the LRU algorithm to decide
which pages to swap to the hard disk to fulfill the request. This
decision is a three-step process:

1. Windows scans the VMM page table looking for pages with
neither an Accessed nor a Dirty attribute. During the scanning
process, Windows clears the Accessed attribute from all the
pages.

2. If Windows finds enough pages meeting the Not Accessed/Not
Dirty requirement, it swaps those pages to the hard disk and
gives the resulting free memory to the process.

 Windows Resource Kit

258 Part 2 Configuring Windows 3.1

3. If Windows cannot find enough pages the first time, then it
repeats the scan. Theoretically, more pages will meet the
requirements because the Accessed attribute was cleared in the
first scan. If the second scan doesn’t find the required pages,
then Windows swaps pages to the hard disk regardless of their
attributes.

The related entries in the [386enh] section of SYSTEM.INI are
LRULowRateMult=, LRURateChngTime=, LRUSweepFreq=,
LRUSweepLen=, LRUSweepLowWater=, and
LRUSweepReset=.
For more information, see the descriptions of these entries in
Chapter 4, “The Windows Initialization Files.”

Swapping Pages to a Network Drive

We recommend that you do not swap pages to a network drive.
Paging to a network drive is possible, but it’s extremely slow. If
you must page to a network drive, use a permanent swap file.
Also, the directory must not have an MS-DOS read-only attribute,
and you must have both create and write access to the directory.
Do not set the value for PagingDrive= or PagingFile= in
SYSTEM.INI to a Novell network drive, because Novell networks are
not compatible with MS-Net Redirector.

Other Memory Management Issues

This section provides brief information on various memory
management issues:

· DPMI and VCPI specifications
· MS-DOS and Windows 3.1
· Memory and startup requirements
· System resources and memory

DPMI and VCPI Specifications

The DOS Protected Mode Interface (DPMI) was developed by a
group of industry leaders. Several members of the DPMI committee

Windows Resource Kit

Chapter 5 Windows 3.1 and Memory Management 259

also helped create the Virtual Control Program Interface (VCPI).
DPMI is primarily a creation of Microsoft, and VCPI was formulated
primarily by Phar Lap Systems. DPMI and VCPI solve two different
problems.

Applications that use MS-DOS Extenders can execute code in the
protected mode of the 80286 or 80386 processor. DPMI provides a
standard method for such applications to switch the 80286
processor to protected mode and to allocate extended memory.
Hundreds of applications use various types of MS-DOS Extenders,
and those that do not already support DPMI require minor
modifications to do so.

VCPI provides an interface that allows applications using MS-DOS
Extenders on 80386 machines to run simultaneously with 386
expanded memory managers. For example, QEMM.EXE, 386MAX.EXE,
and CEMM.EXE support the VCPI specification. Windows 3.1
supports VCPI in both standard mode and 386 enhanced mode.
Windows 3.0 does not support VCPI.

MS-DOS 5.0 and Windows 3.1

Many of the changes in MS-DOS 5.0 make it a more robust platform for Microsoft
Windows, enhancing its ability to make the best use of your system’s memory. For the
best performance from Windows 3.1 (and other applications), we suggest that you
upgrade your PC’s operating system to MS-DOS 5.0 if you haven’t already done so.

On 80386 and 80486 PCs, with MS-DOS 5.0 you can load memory-
resident programs such as device drivers, TSRs, and network
software into the upper memory area, thereby freeing conventional
memory. To do this, you must load HIMEM.SYS and EMM386.EXE,
then load the memory-resident programs using the devicehigh
command in CONFIG.SYS and the loadhigh command in
AUTOEXEC.BAT.

For more information about taking advantage of MS-DOS 5.0 to
optimize your system configuration, see Chapter 6, “Tips for
Configuring Windows 3.1.”

 Windows Resource Kit

260 Part 2 Configuring Windows 3.1

Running Windows Standard Mode with MS-DOS 5.0

· Use the Windows Task List to swap applications (or press
ALT+TAB). Using the MS-DOS 5.0 Task Swapper while running
Windows is redundant, incurring unnecessary conventional
memory overhead.

· Load MS-DOS 5.0 into the HMA, regardless of whether your PC is
an 80286, 80386, or 80486. This will provide more
conventional memory for non-Windows applications running
under Windows standard mode.

Running Windows 386 Enhanced Mode with MS-DOS 5.0

· Load MS-DOS 5.0 into the HMA, and load whatever else fits into
the upper memory area. The conventional memory you free by
loading MS-DOS 5.0 into the HMA is also free in every virtual
machine, giving more memory to every non-Windows
application you run in Windows 386 enhanced mode.

· Use the Task List in Windows 3.1 to switch between
applications (or press ALT+TAB). Windows 386 enhanced mode
allows multitasking, so that multiple applications can run in
the background. The MS-DOS 5.0 Task Swapper can only task-
switch, which means that the swapped application
is suspended.

Memory and Windows Startup Requirements

Windows starts automatically in the appropriate Windows operating mode, depending on
your system configuration. However, you can start Windows in a particular operating
mode by using one of these command-line switches:

· win /s to run in standard mode
· win /3 to run in 386 enhanced mode

Standard Mode Startup Requirements

For Windows to start automatically in standard mode, the system

Windows Resource Kit

Flowchart 1.1
System Requirements

Chapter 5 Windows 3.1 and Memory Management 261

must have:

· 80286 or higher processor
· 256K of free conventional memory
· 192K of free extended memory
· An XMS driver such as HIMEM.SYS already loaded

Conventional and extended memory requirements are mutually
dependent for standard mode and are not fixed.

386 Enhanced Mode Startup Requirements

For Windows to start in 386 enhanced mode, the system must
have:

· 80386 or higher processor
· 256K of free conventional memory
· 1024K of free extended memory
· An XMS driver such as HIMEM.SYS already loaded

Windows 386 enhanced mode requires between 580K and 624K
combined conventional and extended memory to run. A typical
installation requires a minimum of 192K free conventional
memory at the command prompt plus sufficient extended memory
available to run in 386 enhanced mode. Windows can start under
low memory in 386 enhanced mode because it provides virtual
memory support, but it can be extremely slow because of the extra
disk swapping that Windows must perform.

All numbers are approximate and can vary widely depending on
the Windows device drivers present, the MS-DOS version, the
display adapter, and other factors. For example, on Compaq 386
machines, 128K of extended memory is recovered from shadow
RAM. Memory requirements take into account memory that can be
recovered from SMARTDrive, down to the minimum cache size
specified.

Windows checks for a minimum of 1 MB of free extended memory
before it automatically starts in 386 enhanced mode. If it finds
less, it tries to run in standard mode. On an 80386 with 2 MB or
less system memory, if Windows doesn’t find enough free

 Windows Resource Kit

262 Part 2 Configuring Windows 3.1

extended memory, it runs in standard mode. To free more
extended memory so that you can run in 386 enhanced mode, you
might try reducing the amount of extended memory that
SMARTDrive uses by setting its MinCacheSize parameter to 0.

The entries in the [386enh] section of SYSTEM.INI that control how
Windows allocates conventional memory for startup and for use
in 386 enhanced mode are SysVMEMSRequired=,
SysVMXMSRequired=, WindowKBRequired=, and
WindowMemSize=. For details, see the descriptions of these
entries in Chapter 4, “The Windows Initialization Files.”

Memory and the Windows System Resources

The Help About dialog box in Program Manager and File Manager (and in many other
Windows applications) shows the percentage of free system resources and the amount of
free memory. The system resources percentage reflects the memory used by the core
Windows internal structure.

Three core files make up the part of Windows that runs Windows
applications:

· The kernel file (KRNL286.EXE or KRNL386.EXE) loads and
executes Windows applications and handles their memory
management.

· GDI.EXE manages graphics and printing.

· USER.EXE controls user input and output, including the
keyboard, mouse, sound driver, timer, communications ports,
and window management.

Windows Resource Kit

Flowchart 5.8
Out-of-Memory Errors

Chapter 5 Windows 3.1 and Memory Management 263

In Windows 3.x, these files are in the Windows SYSTEM
subdirectory. (In Windows 2.x these modules were linked into the
files WIN200.BIN and WIN200.OVL, so you didn’t see them in the
WINDOWS directory.)

W Both GDI and User have storage areas called heaps, which are
limited to 64K in size. GDI has a local heap; User has a menu heap
and a user heap, each with 64K storage space. The available
system resources reflect the remaining free percentage after
combining the GDI local heap and the user and menu heaps in User.
This increases by 64K the amount of heap space that was available
in Windows 3.0. In Windows 3.1, Program Manager icons are
handled separately and do not use the User heap space.

To see how much of the system resources a particular application uses, note the amount
of system resources available before and after the application runs.
(Choose About Program Manager from the Help menu and check
the amount of system resources listed in the dialog box.)

Although Windows 3.1 allows you to run many more
simultaneous Windows applications than any previous Windows
version, you may get an out-of-memory message that indicates
your system is low on system resources. This is because every
window and sub-window created requires User and GDI local heap
space. The system resources can be exhausted if enough objects
are created by the Windows applications.

An important element of memory management for Windows
applications that is not included in the system resources percentage
is the number of selectors. A selector is a memory pointer that is
consumed with each memory allocation made by a Windows
application. If a Windows application allocates many small data
objects, it is possible to run out of selectors, resulting in an out-of-
memory message.

The efficiency with which a Windows application handles its data
objects can help in this situation. If you experience a chronic
problem with a particular application while few other applications
are loaded, contact the application vendor so the company
becomes aware of the problem and corrects it.

 Windows Resource Kit

264 Part 2 Configuring Windows 3.1

For more information about low-memory and out-of-memory
conditions, see Chapter 13, “Troubleshooting Windows 3.1.”

Windows Resource Kit

Chapter 5 Windows 3.1 and Memory Management 265

SMARTDrive 4.0: A Technical Discussion

W This section describes the new MS-DOS disk cache, SMARTDrive 4.0,
which replaces SMARTDrive version 3.x. The section is written for
experienced technical users who want a deeper understanding of
the utility.

About SMARTDrive 4.0

SMARTDrive 3.x is a read-only track cache that caches on a track
basis and for read operations only. The internal data structures are
tied to the logical geometry of the disk. It caches at the ROM BIOS
Int 13 level and uses the BIOS specified disk geometry to decide the
size of its caching element (that is, track size). This leads to
problems (described below), so Microsoft chose to implement a
new cache in SMARTDrive 4.0.

Figure 5.5

SMARTDrive 3.x

SMARTDrive 4.0 is designed as a block-oriented disk cache. It
hooks into the system at the MS-DOS device driver level rather than
the ROM BIOS Int 13 level. Each block device driver on the MS-DOS
device driver chain is “front-ended” by a SMARTDrive 4.0 module
that provides the actual caching. This yields the following
benefits:

· Independent of Int 13 interface. Many device drivers do not
use the Int 13 interface. This means that SMARTDrive 4.0 can
cache these devices where SMARTDrive 3.x could not.
Examples are Bernoulli, some hard cards, and many SCSI and
WORM drives.

· Independent of disk geometry. Some disk managers and disk
controllers use a disk geometry mapping scheme that causes
the “logical” geometry (that is, what MS-DOS sees) to be
different from the physical geometry. Examples are many PS/2

 Windows Resource Kit

266 Part 2 Configuring Windows 3.1

systems, Ontrack Disk Manager, and several disk controllers.
Int 13-based caches are sensitive to this and often have
problems. For example, Ontrack Disk Manager will actually
change the ROM BIOS-specified disk geometry on the fly and
thus confuse SMARTDrive 3.x.

An API determines the true geometry, but this requires disk-
manager detection and generally complicates matters. Often
logical tracks will actually cross physical track boundaries,
which then causes track caches to incur performance penalties
(intertrack seeks and rotational latencies). Also, to get around
the ROM BIOS 1024 cylinder limitation, disk managers and
controllers will “fold” multiple tracks into one logical track.
This yields the above problem, as well as forcing track caches
to have a very large track buffer. In some cases, this is as large
as 31.5K and must reside in low memory. The design of
SMARTDrive 4.0 eliminates the geometry mismatch problem.

Figure 5.6

SMARTDrive 4.0

SMARTDrive 4.0 is also a write-behind cache. It adds significant
performance improvement where files are being written and
implements a “valid” bits scheme to avoid thrashing the disk in
case of random access I/O.

SMARTDrive 4.0 currently uses a FIFO replacement algorithm and
implements a shrink algorithm that frees memory for Windows in
a way similar to SMARTDrive 3.x. The difference is that
SMARTDrive 4.0 watches for the Windows startup broadcast while
SMARTDrive 3.x provides an IOCTL interface. The net effect is
identical, but SMARTDrive 4.0 is much simpler. When Windows
quits, the process is reversed and the memory is reacquired
by SMARTDrive 4.0.

The following table summarizes the SMARTDrive 3.x design
problems, what other disk-cache software does, and the solutions
employed in SMARTDrive 4.0.

Windows Resource Kit

Chapter 5 Windows 3.1 and Memory Management 267

Feature SMARTDrive 3.x
Other disk caches

SMARTDrive 4.0

Read-Only Cache Causes writes to proceed at the same or
slower speed as with no cache.

All others solve this. Lazy write caching. Valid
bits to avoid thrashing.

Track Cache Tied to “logical” disk geometry, which
disk managers and some disk controllers
change, causing a “single” track read to
actually be multiple ¾ performance hit.

All others have
configurable cache
element size.

Support configurable
cache element size.

Some disks have very large track sizes
(56 on some mapping controllers), which
forces a very large track buffer into low
memory and thus a large low memory
footprint.

Same Same

Internal data structures and algorithms
are tied to the size of track and thus it is
very hard to retrofit variable block size.

Same Same

Int 13 based Many popular device drivers do not go
through Int 13 interface and therefore
don’t get cached. Bernoulli, WORM
drives, and SCSI are some examples of
non-Int 13 devices that SMARTDrive
does not cache.

Mixed. Some cache
Int 13; some cache at
device driver level.

Front-end MS-DOS device
drivers. This means that
block device in MS-DOS
will be cached.

Disk manager drivers and some
controllers cause a geometry mismatch.

Some DM drivers
provide DDI, which
Int 13 caches need to
call (PC-KWIK).

Above solution eliminates
need to know true
geometry.

 Windows Resource Kit

268 Part 2 Configuring Windows 3.1

SMARTDrive 4.0: Frequently Asked Questions

Q: What is double buffering?

A: Certain disk controllers support a concept called bus
mastering, where the actual disk controller takes over the bus to
transfer data to or from system RAM. Some SCSI controllers have
this feature. A problem occurs when running in the virtual 8086
mode that Windows 3.x virtual machines provide. Popular
memory managers also use virtual 8086 mode. The read or write
address that is passed to MS-DOS is often not the same as the actual
physical memory address. This can cause data to be read from the
wrong location or, worse, can cause data to be written to the
wrong RAM. The result can be erratic system behavior.

Windows Resource Kit

Chapter 5 Windows 3.1 and Memory Management 269

Microsoft created a standard called Virtual DMA Services, which
provides an interface that allows these bus master controllers to get
the correct address and avoid the problem. However, some older
bus master controller cards do not support this standard. So we
have added a feature to SMARTDrive that provides a memory buffer
with physical and virtual addresses that are the same, so we avoid
the problem at the cost of 2.5K of conventional memory and a
small amount of performance (the cost of moving the data to and
from the buffer). This feature is used by placing the line
device=smartdrv.exe /double_buffer in CONFIG.SYS. This only
installs the double-buffer driver, not the cache. (The cache must be
installed in AUTOEXEC.BAT.)

Q: Do I need double buffering?

A: The Windows 3.1 Setup program tries to determine whether
your system needs double buffering, and if so, installs
SMARTDRV.EXE in your CONFIG.SYS file for double buffering. Most
disk controllers do not need double buffering. These include all
MFM, RLL, and IDE controllers as well as many ESDI and SCSI
devices. In the cases where Setup is unable to determine whether
double buffering is needed, it will install the driver in CONFIG.SYS,
possibly erring on the side of safety. We have added a feature to
SMARTDrive to help you determine if double buffering is unneeded
and to allow you to remove the driver. After your system is
running with SMARTDrive loaded, type smartdrv at the command
prompt and press ENTER. You will see something similar to the
following screen.

Microsoft SMARTDrive Disk Cache version 4.0
Copyright 1991,1992 Microsoft Corp.
Cache size: 1,048,576 bytes
Cache size while running Windows: 1,048,576 bytes Disk Caching Status
drive read cache write cache buffering
A: yes no no
B: yes no no
C: yes yes yes
D: yes yes -
For help, type smartdrv /? at the MS-DOS prompt.

Notice the column labeled “buffering.” For each drive that is being
cached, it can have one of three values: Yes to indicate that
double buffering is needed. No to indicate that buffering is not
needed, and the “–” symbol to indicate that SMARTDrive has not yet

 Windows Resource Kit

270 Part 2 Configuring Windows 3.1

determined the necessity of double buffering. If the buffering
column has all No’s in it, the double buffer driver is not needed.

Q: Why is SMARTDrive in both my CONFIG.SYS and
AUTOEXEC.BAT files?

A: There are really two device drivers in a single file: a disk
cache and a double buffer driver. See above for a description of
double buffering. The cache component of SMARTDRV.EXE is
installed in AUTOEXEC.BAT and the double buffer driver is installed
in CONFIG.SYS.

Q: Does SMARTDrive work with Stacker?

A: Yes. SMARTDrive works quite well with Stacker. SMARTDrive is aware of Stacker
and will automatically cache the underlying drive that Stacker uses. This provides
significantly better cache utilization by increasing the effective size of the cache by the
compression ratio of Stacker. However, do not cache the actual “stacked” volume. Only
the underlying (uncompressed) drive should be cached.

Q: Why doesn’t my Stacker Volume show up in the
SMARTDrive status screen?

A: This is because SMARTDrive is caching underneath Stacker.
You should see the underlying drive letter listed.

Q: How can I make sure that data written to the disk is really
on the disk and not still in the cache when I reboot my
machine? Won’t my data get lost when I reboot?

A: SMARTDrive goes to great lengths to avoid data loss. When it
detects the CTRL+ALT+DEL reboot key sequence, SMARTDrive takes
control and makes sure that all data has been written to the actual
disk. You might see a box in the upper left corner of the display
asking you to wait while this happens. SMARTDrive also writes all
data to the disk when an application calls the MS-DOS reset disk
function to make sure that all data in the MS-DOS buffers gets
written to disk.

To force all data to be written to the disk, type smartdrv /c at the
command prompt and press ENTER.

Windows Resource Kit

Flowchart 1.8
 Stacker

Chapter 5 Windows 3.1 and Memory Management 271

If you use a third-party program to reboot your machine from a
batch file, you should make sure that you have the above line in
the batch file before the reboot program. Failure to do so may
cause loss of data.

 Windows Resource Kit

	Related information
	· Windows User’s Guide: Chapter 5, “Control Panel,” and Chapter 14, “Optimizing Windows”
	Flowchart 5.9 Cannot Run Windows in Standard Mode
	Flowcharts 5.1 and 5.2 Cannot Run 386 Enhanced Mode
	Flowchart 1.1 System Requirements
	Flowchart 5.8 Out-of-Memory Errors
	Flowchart 1.8 Stacker
	Chapter 5 Windows 3.1 and Memory Management

	· Windows Resource Kit: Chapter 7, “Setting Up Non-Windows Applications,” and Chapter 13, “Troubleshooting Windows 3.1”
	· Glossary terms: Expanded Memory Specification, Extended Memory Specification, multitasking, page frame, protected mode, virtual memory
	Contents of this chapter

	About Memory
	Note This chapter supplements, rather than repeating, the information in Chapter 14, “Optimizing Windows,” in the Windows User’s Guide.
	Types of Memory: An Overview
	· Conventional memory consists of the first 640K of memory available on your machine. Most PCs have at least 256K of conventional memory. Your system must have 640K of conventional memory to run Windows.
	When you boot your machine, MS-DOS runs the utilities and applications listed in the CONFIG.SYS and AUTOEXEC.BAT files. These files often use conventional memory to function. The remaining memory is available for running other applications such as Windows.
	· Extended memory is essentially a seamless upward extension of the original one megabyte address space available in the memory of 80286 and 80386 machines. Extended memory always starts exactly at 1024K, where the upper memory area ends. The first 64K of extended memory is referred to as the high memory area (HMA).
	· Expanded memory can be installed as an expanded memory card or, on an 80386 machine, emulated by an expanded memory manager (EMM). The EMM software maps pages of expanded memory onto the system’s upper memory area (from 640K to 1024K). Applications must be designed to interact with EMM software to take advantage of expanded memory.
	To see the kind and amount of memory in your system:

	· Type msd at the command prompt to run the Microsoft Diagnostics utility that is installed with Windows 3.1. This utility prepares an extensive report on the memory and drivers installed in your system.
	· Or, if MS-DOS 5.0 is installed on your system, type mem at the command prompt to see a brief summary of your system’s memory.
	Note If you use the mem command to view memory from within a Windows 3.1 virtual machine, you will only see the amount of memory available to the virtual machine.

	The Windows 3.1 Memory Device Drivers
	· HIMEM.SYS provides access to extended memory and the HMA. The extended memory it provides conforms to XMS 3.0.
	· EMM386.EXE takes the XMS 3.0 memory provided by HIMEM.SYS and uses it to emulate expanded memory or to provide UMBs, or both. EMM386.EXE is DPMI-compliant and emulates expanded memory that conforms to LIM 3.2 or LIM 4.0.
	· RAMDRIVE.SYS creates a RAM disk.
	· SMARTDRV.EXE is a disk caching utility.
	· Swapdisk, which manages the disk swap process for caching Windows application code in both standard and 386 enhanced modes.
	· Virtual Memory Manager (VMM), which manages swapping to a temporary or permanent swap file in 386 enhanced mode.
	Expanded Memory: A Technical Discussion
	Note This discussion is relevant if you want to take advantage of expanded memory installed in your system, or if you are running Windows 3.1 with non-Windows applications that require expanded memory. If your system doesn’t have expanded memory, or if you are not running applications designed to use expanded memory, you can skip this discussion.

	· To gain more effective performance from large non-Windows applications such as spreadsheets and CAD programs.
	· To run memory-resident programs or applications that use shared data.
	Note The 80386 and higher microprocessors can emulate EMS hardware by using extended memory with memory managers and special software such as EMM386.EXE. For more information about using this device driver with Windows 3.1, see Chapter 6, “Tips for Configuring Windows 3.1.”
	The Expanded Memory Specifications

	· LIM 3.2 This expanded memory specification moves data in 64K blocks, each made up of four contiguous 16K pages to form a 64K page frame. The LIM 3.2 standard works well for storing data from spreadsheets in expanded memory, but it is insufficient for multitasking.
	· LIM 4.0 This expanded memory specification allows data to be moved in blocks of 1 to 64 pages (overcoming the LIM 3.2 limitations on size and flexibility). LIM 4.0 also removes the restriction that the pages must be contiguous, essentially abandoning the page frame requirement.
	
	Bank Switching in Expanded Memory
	Backfilling in Expanded Memory
	Difficulties with Expanded Memory

	· Lack of free space. The primary problem for the EMM is finding at least 64K of contiguous free space in which to place the page frame. Even though LIM 4.0 technically doesn’t require a 64K page frame, most expanded memory applications will not use expanded memory unless the 64K page frame is present. Frequently, the address areas of various adapter cards need to be shuffled around to free enough space for a contiguous 64K page frame. This process gets complicated with boards such as the IBM 3270 emulator, which has a nonmovable address in most machines.
	· Mapping conflicts. Most expanded memory managers such as EMM386 use a search algorithm to find unused memory between the hexadecimal addresses C000 through DFFF. The EMM then uses this memory as page frames. Some cards don’t reserve their address space until the card is accessed, so the EMM can inadvertently map expanded memory pages on top of the adapter, causing crashes and intermittent operation. This problem is fairly rare, because the page search routine can locate almost all popular adapters.

	Windows Standard Mode and Memory
	Extended Memory and Standard Mode
	· Performing code caching with Windows applications.
	· Swapping non-Windows applications to extended memory.
	Using Extended Memory for Code Caching

	· The Movable code segment, which means that the segment can be moved around in memory.
	· The Discardable code segment, which means that the segment can be overwritten and then reloaded from disk when necessary.
	· The Swapable code segment, which can be swapped to the hard disk.
	Using Extended Memory with Non-Windows Applications

	Expanded Memory and Standard Mode

	Windows 386 Enhanced Mode and Memory
	WINA20.386 and 386 Enhanced Mode
	· If you upgrade to Windows 3.1, or if you never run 386 enhanced mode with Windows 3.0, you can remove the WINA20.386 file by changing its read-only attribute, then deleting it in the usual way.
	· If you are running Windows 3.0 and you move the WINA20.386 file to a different directory, you must ensure that Windows can find this file by adding a switches=/w command to CONFIG.SYS and also adding a device=[new path]wina20.386 entry to the [386enh] section of SYSTEM.INI.

	Extended Memory and 386 Enhanced Mode
	· To allocate translation buffers for protected-mode API calls for MS-DOS and the network.
	· To place the page frame for expanded memory (if required).

	Expanded Memory and 386 Enhanced Mode
	Note The expanded memory required by a non-Windows application should be allocated with PIF parameters as described in Chapter 7, “Setting Up Non-Windows Applications.”
	Page-Frame Conflicts in 386 Enhanced Mode
	Placing Translation Buffers in the Upper Memory Area
	Controlling UMB Mapping in 386 Enhanced Mode
	About 386 Expanded Memory Managers

	Virtual Memory and 386 Enhanced Mode
	Creating Swap Files for Virtual Memory

	· A temporary swap file named WIN386.SWP is created on the hard disk while Windows is running, then deleted automatically when you exit Windows. This swap file is not a hidden or system file, and it can shrink or grow in size as necessary. The entry for PagingFile= in the [386enh] section of SYSTEM.INI defines the filename and path for the temporary swap file. You need about 1.5 MB of free hard disk space on the paging drive for a temporary swap file.
	· A permanent swap file is a hidden file named 386PART.PAR, which has a system attribute and is always created in the root directory of the specified drive. Windows also creates a read-only SPART.PAR file in the WINDOWS directory that tells Windows where and how large the permanent swap file is. Because a permanent swap file must be contiguous, you cannot create a permanent swap file bigger than the largest contiguous free segment of your hard disk. You cannot create a permanent swap file if Stacker is running on your system.
	Note Do not attempt to create a swap file on a RAM disk. A swap file created on a RAM disk is self-defeating, because you sacrifice physical memory to create virtual memory.
	Demand Paging and Virtual Memory Management
	The LRU Algorithm for Virtual Memory Management

	1. Windows scans the VMM page table looking for pages with neither an Accessed nor a Dirty attribute. During the scanning process, Windows clears the Accessed attribute from all the pages.
	2. If Windows finds enough pages meeting the Not Accessed/Not Dirty requirement, it swaps those pages to the hard disk and gives the resulting free memory to the process.
	Swapping Pages to a Network Drive

	Other Memory Management Issues
	· DPMI and VCPI specifications
	· MS-DOS and Windows 3.1
	· Memory and startup requirements
	· System resources and memory
	DPMI and VCPI Specifications
	MS-DOS 5.0 and Windows 3.1
	Running Windows Standard Mode with MS-DOS 5.0

	· Use the Windows Task List to swap applications (or press ALT+TAB). Using the MS-DOS 5.0 Task Swapper while running Windows is redundant, incurring unnecessary conventional memory overhead.
	Running Windows 386 Enhanced Mode with MS-DOS 5.0

	· Load MS-DOS 5.0 into the HMA, and load whatever else fits into the upper memory area. The conventional memory you free by loading MS-DOS 5.0 into the HMA is also free in every virtual machine, giving more memory to every non-Windows application you run in Windows 386 enhanced mode.
	· Use the Task List in Windows 3.1 to switch between applications (or press ALT+TAB). Windows 386 enhanced mode allows multitasking, so that multiple applications can run in the background. The MS-DOS 5.0 Task Swapper can only task-switch, which means that the swapped application is suspended.

	Memory and Windows Startup Requirements
	· win /s to run in standard mode

	· win /3 to run in 386 enhanced mode
	Standard Mode Startup Requirements
	· 80286 or higher processor
	· 256K of free conventional memory
	· 192K of free extended memory
	· An XMS driver such as HIMEM.SYS already loaded

	386 Enhanced Mode Startup Requirements
	· 80386 or higher processor
	· 256K of free conventional memory
	· 1024K of free extended memory
	· An XMS driver such as HIMEM.SYS already loaded

	Memory and the Windows System Resources
	Three core files make up the part of Windows that runs Windows applications:
	· The kernel file (KRNL286.EXE or KRNL386.EXE) loads and executes Windows applications and handles their memory management.
	· GDI.EXE manages graphics and printing.
	· USER.EXE controls user input and output, including the keyboard, mouse, sound driver, timer, communications ports, and window management.

	SMARTDrive 4.0: A Technical Discussion
	About SMARTDrive 4.0
	· Independent of Int 13 interface. Many device drivers do not use the Int 13 interface. This means that SMARTDrive 4.0 can cache these devices where SMARTDrive 3.x could not. Examples are Bernoulli, some hard cards, and many SCSI and WORM drives.
	· Independent of disk geometry. Some disk managers and disk controllers use a disk geometry mapping scheme that causes the “logical” geometry (that is, what MS-DOS sees) to be different from the physical geometry. Examples are many PS/2 systems, Ontrack Disk Manager, and several disk controllers. Int 13-based caches are sensitive to this and often have problems. For example, Ontrack Disk Manager will actually change the ROM BIOS‑specified disk geometry on the fly and thus confuse SMARTDrive 3.x.
	An API determines the true geometry, but this requires disk-manager detection and generally complicates matters. Often logical tracks will actually cross physical track boundaries, which then causes track caches to incur performance penalties (intertrack seeks and rotational latencies). Also, to get around the ROM BIOS 1024 cylinder limitation, disk managers and controllers will “fold” multiple tracks into one logical track. This yields the above problem, as well as forcing track caches to have a very large track buffer. In some cases, this is as large as 31.5K and must reside in low memory. The design of SMARTDrive 4.0 eliminates the geometry mismatch problem.

	SMARTDrive 4.0: Frequently Asked Questions
	Q: What is double buffering?
	Q: Do I need double buffering?
	Q: Why is SMARTDrive in both my CONFIG.SYS and AUTOEXEC.BAT files?
	Q: Does SMARTDrive work with Stacker?
	Q: Why doesn’t my Stacker Volume show up in the SMARTDrive status screen?
	Q: How can I make sure that data written to the disk is really on the disk and not still in the cache when I reboot my machine? Won’t my data get lost when I reboot?

